Merge Sort

Divide-and-Conquer
Divide-and-conquer Is a general algorithm design paradigm:
 Divide: divide the input data S in two disjoint subsets S; and S,

* Recur: solve the subproblems associated with S; and S,
— the base case for the recursion are subproblems of size 0 or 1
» Conquer: combine the solutions for S, and S, into a solution for S

Merge-sort is a sorting algorithm based on the divide-and-conquer
paradigm

« Like heap-sort
— Uses a comparator
— Has O(n log n) running time
» Unlike heap-sort
— Does not use an auxiliary priority queue
— Accesses data in a sequential manner (suitable to sort data on a disk)

Merge Sort

Merge-sort on an input sequence S with n elements consists of three steps:

 Divide: partition S into two sequences S, and S, of about n/2 elements
each

* Recur: recursively sort S; and S,
« Conguer: merge S; and S, into a unique sorted sequence

Algorithm mergeSort(S, C)
Input sequence S with n elements, comparator C
Output sequence S sorted according to C
If S.size() > 1
(S, S,) « partition(S, n/2)
mergeSort(S,, C)
mergeSort(S,, C)
S < merge(S;, S,)

Merging two sorted sequences

The conguer step of merge- Algorithm merge(A, B)
sort consists of merging two Input sequences A and B with n/2 elements each
sorted sequences A and B into Output sorted sequence of AU B

a sorted sequence S

containing the union of the S <~ empty sequence |
elements of A and B while —A.IsEmpty() A =B.isEmpty()

if A.first().element() < B.first().element()
S.insertLast(A.remove(A.first()))

else
Merging two sorted S.insertLast(B.remove(B.first()))
sequences, each with n/2 while —A.isEmpty()
elements, takes O(n) time S.insertLast(A.remove(A.first()))

while —B.isEmpty()
S.insertLast(B.remove(B.first()))

return S

Merge Sort 4

Merge-Sort Tree

An execution of merge-sort is depicted by a binary tree

 each node represents a recursive call of merge-sort and stores
— unsorted sequence before the execution and its partition
— sorted sequence at the end of the execution

 theroot is the initial call

 the leaves are calls on subsequences of size 1

Merge Sort

Execution Example

e Partition

Execution Example (cont.)

» Recursive call, partition

Execution Example (cont.)

» Recursive call, partition

Execution Example (cont.)

* Recursive call, base case

eeeeeeeee

Execution Example (cont.)

* Recursive call, base case

N

[7—>7] [2—>2] :

Execution Example (cont.)

* Merge

VA

[7—>7] [2—>2] :

Execution Example (cont.)

* Recursive call, ..., base case, merge

-7 [222] 929 |

Execution Example (cont.)

* Merge

~

727 [222] [929 [424

Execution Example (cont.)

~ N

727 [222] (909 (424 (323 (829 (609 (1o

eeeeeeeee

Execution Example (cont.)

* Merge

727 [222] (909 (424 (323 (829 (609 (1o

eeeeeeeee

Analysis of Merge-Sort

» The height h of the merge-sort tree is O(log n)
— at each recursive call we divide the sequence in half

« The overall amount or work done at the nodes of depth i is O(n)
— we partition and merge 2' sequences of size n/2!
— we make 2! recursive calls

* Thus, the total running time of merge-sort is O(n log n)

depth #seqgs size

0 1 n []
1 2 n/2 [) [)

))
403 At

i 2i /2 [[[‘7T‘
[[[/\

)
)) O O

Comparing sorting algorithms

Consider the following when evaluating a sorting algorithm:
* Time complexity
« Space complexity
— An in-place algorithm requires only n + O(1) space, using the
already given space for the n elements and O(1) additional space
 Stability
— Assorting algorithm is stable if it preserves the original relative
ordering of elements with equal value
— EXx: Unsorted sequence (B, b, a, ¢). Suppose B=banda<b<c.
« Stable sorted: (a, B, b, ¢)
 Unstable sorted: (a, b, B, ¢)

— Necessary if we want to sort repeatedly by different attributes
(i.e., sort by first name, then sort again by last name)

Summary of Sorting Algorithms

Algorithm

heap-sort

Time

O(n log n)

Notes

#not stable
for large data sets (1K — 1M)

merge-sort

O(n log n)

not in-place

stable

sequential data access

for huge data sets (> 1M)

Merge Sort

18

Sets

Set ADT

« Acollection of unordered distinct objects

— there is no inherent ordering of elements in a set, but keeping the
elements sorted can lead to more efficient set operations

« Main operations
— union(B): executes A « AUB
— Intersect(B): executesA<« AN B
— subtract(B): executes A < A—-B
— Implemented using a generic version of the merge algorithm

* Running time of an operation should be at most O(n,+ng)

Storing a Set in a List

« \We can implement a set with a list
« Elements are sorted according to some canonical ordering
« Space used is O(n)

Generic Merging

« Generalized merge of two sorted lists A and B

« Auxiliary methods alsLess, bisLess, bothAreEqual decide whether to
add the element to list S based on what main operation is performed

Algorithm genericMerge(A, B)
S <« empty sequence
while —A.IsEmpty() A =B.isEmpty()
a < A.first().element(); b « B.first().element()
ifa<b
alsLess(a, S); A.remove(A.first())
elseifb<a
blsLess(b, S); B.remove(B.first())
else{b=a}
bothAreEqual(a, b, S)
A.remove(A.first()); B.remove(B.first())
while —A.iIsEmpty()
alsLess(a, S); A.remove(A.first())
while —B.isEmpty()
blsLess(b, S); B.remove(B.first())
return S

Example: Union

« ifa<b, copy a to output sequence and go to next element of A
« ifa=nDh, copy a to output sequence and go to next element of A and B
« ifa>b, copy b to output sequence and go to next element of B

S=AuUB

Example: Union

« ifa<b, copy a to output sequence and go to next element of A
« ifa=nDh, copy a to output sequence and go to next element of A and B
« ifa>b, copy b to output sequence and go to next element of B

S=AUB 2

Example: Union

« ifa<b, copy a to output sequence and go to next element of A
« ifa=nDh, copy a to output sequence and go to next element of A and B
« ifa>b, copy b to output sequence and go to next element of B

S=AuUB 215

Example: Union

« ifa<b, copy a to output sequence and go to next element of A
« ifa=nDh, copy a to output sequence and go to next element of A and B
« ifa>b, copy b to output sequence and go to next element of B

S=AuUB 2|56

Example: Union

« ifa<b, copy a to output sequence and go to next element of A
« ifa=nDh, copy a to output sequence and go to next element of A and B
« ifa>b, copy b to output sequence and go to next element of B

S=AuUB 2|15|6|7

Example: Union

« ifa<b, copy a to output sequence and go to next element of A
« ifa=nDh, copy a to output sequence and go to next element of A and B
« ifa>b, copy b to output sequence and go to next element of B

S=AuUB 2|5/6|7]|8

Example: Union

« ifa<b, copy a to output sequence and go to next element of A
« ifa=nDh, copy a to output sequence and go to next element of A and B
« ifa>b, copy b to output sequence and go to next element of B

S=AuUB 2|15/6/7|8]9

Example: Union

« ifa<b, copy a to output sequence and go to next element of A
« ifa=nDh, copy a to output sequence and go to next element of A and B
« ifa>b, copy b to output sequence and go to next element of B

S=AuUB 215|6|7/8/9[10

Using Generic Merge
for Set Operations

« Any of the set operations can be implemented using a generic merge

* For example:
— Intersection: only copy elements that are duplicated in both lists

— subtraction: only copy elements from A that are not equal to
those in B

 All methods run in linear time.

Quick Sort

Quick Sort

A sorting algorithm based on the
divide-and-conquer paradigm
* Divide: pick a pivot element x and
partition S into
— L elements less than x
— E elements equal to x

— G elements greater than x

 Recur:sortLand G Y
« Conquer:joinL, Eand G

The choice of the pivot affects the
algorithm’s performance.

Partition

Algorithm partition(S, x)
Input sequence S, pivot element x
Output subsequences L, E, G
L, E, G < empty sequences
while =S.isEmpty()

Each insert/remove takes O(1) time. y < S.remove(S first())

Thus, the partition step of quick-sort if v <x

takes O(n) time. L.insertLast(y)
else if y = x

E.insertLast(y)
else{y>x}
G.insertLast(y)
return L, £, G

Remove each element y from S

Inserty into L, E or G, depending on the
result of the comparison with the pivot x

The choice of the pivot affects the performance of Quick Sort.

Quick Sort 35

Quick-Sort Tree

An execution of quick-sort depicted by a binary tree

« Each node represents a recursive call of quick-sort and stores
— Unsorted sequence before the execution and its pivot
— Sorted sequence at the end of the execution

« The root is the initial call

« The leaves are calls on subsequences of size O or 1

Quick Sort Execution

Strategy: Select the last element as the pivot

Quick Sort

37

Quick Sort Execution

Strategy: Select the last element as the pivot

Select pivot, partition, recursive call

Quick Sort

38

Quick Sort Execution

Strategy: Select the last element as the pivot

Select pivot, partition, recursive call

Quick Sort

39

Quick Sort Execution

« Strategy: Select the last element as the pivot

e Join

Quick Sort

40

Quick Sort Execution

« Strategy: Select the last element as the pivot

Quick Sort

41

Quick Sort Execution

« Strategy: Select the last element as the pivot

Quick Sort

42

Quick Sort Execution

« Strategy: Select the last element as the pivot

Quick Sort

43

Quick Sort Execution

« Strategy: Select the last element as the pivot

Quick Sort

44

Quick Sort Execution

« Strategy: Select the last element as the pivot

Quick Sort

45

Worst-case Running Time

Occurs when the pivot is the unigue minimum or maximum element
* One of L and G has size n — 1 and the other has size 0
« The running time is proportional to the sum: n+(nN—-1)+...+2+1

« |If we use the strategy of selecting the last element as the pivot, this happens when
the list is already sorted!

Thus, the worst-case running time of quick-sort is O(n?)

depth time
0 n []
1 n-1 L [)

Quick Sort 46

Randomized Quick Sort

Pivot selection strategy: choose a random element as the pivot
« Still has worst-case running time O(n?)

— Due to random selection, this case is highly unlikely
« Expected running time is O(nlogn)

(749672 > 246779 |

/\

2 > 24 | (797 > 779

/\

[2—)2] [] 99

Expected Running Time

Consider a recursive call of quick-sort on a sequence of size s
« Good call: the sizes of L and G are each less than 3s/4
- Bad call: one of L and G has size greater than 3s/4

(123456789101112131415 (123456789101112131415 |
(1234567] 91011121314 15 L1] 3456789101112131415 |
Good call Bad call

A call is good with probability 1/2
« 1/2 of the possible pivots cause good calls:

[1234 5678910111213141516]

H_,\ ~ JH_J

Bad pivots Good pivots Bad pivots

Quick Sort Pseudocode

The following procedure implements quicksort:

QUICKSORT(A, p.r)

ifp<r
g = PARTITION(A, p.r)
QUICKSORT(A, p.g — 1)
QUICKSORT(A,g + 1,r)

= e b =

To sort an entire array A, the initial call is QUICKSORT(A, 1, A.length).

Partitioning the array

The key to the algorithm is the PARTITION procedure, which rearranges the subar-
ray A[p..r]in place.

PARTITION(A. p.1)
x = Alr]
i = p—1
for j = ptor — 1
if A[j]=x

P =1i+1

exchange A[i] with A[f]
exchange A[i + 1] with A[r]
return i + 1

00 =1 O LA e ba o=

49

Summary of Sorting Algorithms

Algorithm Time Notes

in-place, not stable

| PR @) n2
selection-sort (n% 4 slow (good for small inputs)

in-place, stable

: — O(n?
INSEFtion-Sort () # slow (good for small inputs)
. # in-place, not stable
quick-sort (n log n) # randomized
expected _
fast (good for large inputs)
#not stabl
heap-sort O(n log n) not Stabie

fast (good for large inputs)

not in-place, stable
merge-sort O(n log n) # sequential data access
fast (good for huge inputs)

Exercise
Other: Nuts and Bolts

You are given a collection of n bolts of different widths, and n
corresponding nuts.

* You can test whether a given nut and bolt fit together, from which
you learn whether the nut is too large, too small, or an exact match
for the bolt.

« The differences in size between pairs of nuts or bolts are too small to
see by eye, so you cannot compare the sizes of two nuts or two bolts
directly.

* You are to match each bolt to each nut.

Give an efficient algorithm to solve the nuts and bolts problem.

Quick Sort 54

Exercise

* How would you modify QUICKSORT to sort into nonincreasing
order?

Sorting Lower Bound

Comparison Based Sorting

Recall - Sorting
* Input: A sequence of n values x;, X,, ..., X,
 output: A permutationy,, Vs, ..., Yy, such thaty, <y, <... <y,

Many algorithms are comparison based

* they sort by making comparisons between pairs of objects

« exX: selection-sort, insertion-sort, heap-sort, merge-sort, quick-sort, ...
 Destso far runs in O(nlogn) time... can we do better?

Let’s derive a lower bound on the running time of any algorithm that uses
comparisons to sort n elements Xy, X,, X,

Counting Comparisons

A decision tree represents every sequence of comparisons that an algorithm might
make on an input of size n

each possible run of the algorithm corresponds to a root-to-leaf path

at each internal node a comparison x; < x; is performed and branching made
nodes annotated with the orderings consistent with the comparisons made so far
leaf contains result of computation (a total order of elements)

\

? ? ? ?
[xe<xf J [xk<xI J [xm<xo. X, <X,

/N /N /N SN

Decision Tree Example

Algorithm: insertion sort
Instance (n = 3): the numbers 1,2,3

Sorting Lower Bound

60

Height of a Decision Tree

Claim: The height of a decision tree is Q(nlogn).

Proof: There are n! leaves. A tree of height h has at most 2" leaves. So
2h > n!

h > log,(n!)

B minimum height (time)
> c-log,(n") I

= c-nlog,n.
Thus, h € Q(nlogn).

log (n!)

2 2 2 2
wox?)fren?) fn<n?) (e

/N /N /N /N

61

Lower Bound

Theorem: Every comparison sort requires Q(nlogn) in the worst-case.

Proof: Given a comparison sort, we look at the decision tree it generates
on an input of size n.

« Each path from root to leaf is one possible sequence of comparisons
« Length of the path is the number of comparisons for that instance

« Height of the tree is the worst-case path length (number of
comparisons)

Height of the tree is (nlogn) by the previous claim. Hence, every
comparison sort requires (nlogn) comparisons.

Sorting Lower Bound 62

