
Merge Sort

Divide-and-Conquer
Divide-and-conquer is a general algorithm design paradigm:

• Divide: divide the input data S in two disjoint subsets S1 and S2

• Recur: solve the subproblems associated with S1 and S2

– the base case for the recursion are subproblems of size 0 or 1

• Conquer: combine the solutions for S1 and S2 into a solution for S

Merge-sort is a sorting algorithm based on the divide-and-conquer
paradigm

• Like heap-sort

– Uses a comparator

– Has O(n log n) running time

• Unlike heap-sort

– Does not use an auxiliary priority queue

– Accesses data in a sequential manner (suitable to sort data on a disk)

Merge Sort 2

Merge Sort
Merge-sort on an input sequence S with n elements consists of three steps:

• Divide: partition S into two sequences S1 and S2 of about n/2 elements
each

• Recur: recursively sort S1 and S2

• Conquer: merge S1 and S2 into a unique sorted sequence

3

Algorithm mergeSort(S, C)

Input sequence S with n elements, comparator C

Output sequence S sorted according to C

if S.size() > 1

(S1, S2)  partition(S, n/2)

mergeSort(S1, C)

mergeSort(S2, C)

S  merge(S1, S2)

Merging two sorted sequences
The conquer step of merge-
sort consists of merging two
sorted sequences A and B into
a sorted sequence S
containing the union of the
elements of A and B

Merging two sorted
sequences, each with n/2
elements, takes O(n) time

Merge Sort 4

Algorithm merge(A, B)

Input sequences A and B with n/2 elements each

Output sorted sequence of A  B

S  empty sequence

while A.isEmpty()  B.isEmpty()

if A.first().element() < B.first().element()

S.insertLast(A.remove(A.first()))

else

S.insertLast(B.remove(B.first()))

while A.isEmpty()
S.insertLast(A.remove(A.first()))

while B.isEmpty()
S.insertLast(B.remove(B.first()))

return S

Merge Sort 5

Merge-Sort Tree
An execution of merge-sort is depicted by a binary tree

• each node represents a recursive call of merge-sort and stores

– unsorted sequence before the execution and its partition

– sorted sequence at the end of the execution

• the root is the initial call

• the leaves are calls on subsequences of size 1

7 2  9 4 → 2 4 7 9

7  2 → 2 7 9  4 → 4 9

7 → 7 2 → 2 9 → 9 4 → 4

Merge Sort 6

Execution Example

• Partition

7 2 9 4 → 2 4 7 9 3 8 6 1 → 1 3 8 6

7 2 → 2 7 9 4 → 4 9 3 8 → 3 8 6 1 → 1 6

7 → 7 2 → 2 9 → 9 4 → 4 3 → 3 8 → 8 6 → 6 1 → 1

7 2 9 4  3 8 6 1 → 1 2 3 4 6 7 8 9

Merge Sort 7

Execution Example (cont.)

• Recursive call, partition

7 2  9 4 → 2 4 7 9 3 8 6 1 → 1 3 8 6

7 2 → 2 7 9 4 → 4 9 3 8 → 3 8 6 1 → 1 6

7 → 7 2 → 2 9 → 9 4 → 4 3 → 3 8 → 8 6 → 6 1 → 1

7 2 9 4  3 8 6 1 → 1 2 3 4 6 7 8 9

Merge Sort 8

Execution Example (cont.)

• Recursive call, partition

7 2  9 4 → 2 4 7 9 3 8 6 1 → 1 3 8 6

7  2 → 2 7 9 4 → 4 9 3 8 → 3 8 6 1 → 1 6

7 → 7 2 → 2 9 → 9 4 → 4 3 → 3 8 → 8 6 → 6 1 → 1

7 2 9 4  3 8 6 1 → 1 2 3 4 6 7 8 9

Merge Sort 9

Execution Example (cont.)

• Recursive call, base case

7 2  9 4 → 2 4 7 9 3 8 6 1 → 1 3 8 6

7  2 → 2 7 9 4 → 4 9 3 8 → 3 8 6 1 → 1 6

7 → 7 2 → 2 9 → 9 4 → 4 3 → 3 8 → 8 6 → 6 1 → 1

7 2 9 4  3 8 6 1 → 1 2 3 4 6 7 8 9

Merge Sort 10

Execution Example (cont.)

• Recursive call, base case

7 2  9 4 → 2 4 7 9 3 8 6 1 → 1 3 8 6

7  2 → 2 7 9 4 → 4 9 3 8 → 3 8 6 1 → 1 6

7 → 7 2 → 2 9 → 9 4 → 4 3 → 3 8 → 8 6 → 6 1 → 1

7 2 9 4  3 8 6 1 → 1 2 3 4 6 7 8 9

Merge Sort 11

Execution Example (cont.)

• Merge

7 2  9 4 → 2 4 7 9 3 8 6 1 → 1 3 8 6

7  2 → 2 7 9 4 → 4 9 3 8 → 3 8 6 1 → 1 6

7 → 7 2 → 2 9 → 9 4 → 4 3 → 3 8 → 8 6 → 6 1 → 1

7 2 9 4  3 8 6 1 → 1 2 3 4 6 7 8 9

Merge Sort 12

Execution Example (cont.)

• Recursive call, …, base case, merge

7 2  9 4 → 2 4 7 9 3 8 6 1 → 1 3 8 6

7  2 → 2 7 9 4 → 4 9 3 8 → 3 8 6 1 → 1 6

7 → 7 2 → 2 3 → 3 8 → 8 6 → 6 1 → 1

7 2 9 4  3 8 6 1 → 1 2 3 4 6 7 8 9

9 → 9 4 → 4

Merge Sort 13

Execution Example (cont.)

• Merge

7 2  9 4 → 2 4 7 9 3 8 6 1 → 1 3 8 6

7  2 → 2 7 9 4 → 4 9 3 8 → 3 8 6 1 → 1 6

7 → 7 2 → 2 9 → 9 4 → 4 3 → 3 8 → 8 6 → 6 1 → 1

7 2 9 4  3 8 6 1 → 1 2 3 4 6 7 8 9

Merge Sort 14

Execution Example (cont.)

7 2  9 4 → 2 4 7 9 3 8 6 1 → 1 3 6 8

7  2 → 2 7 9 4 → 4 9 3 8 → 3 8 6 1 → 1 6

7 → 7 2 → 2 9 → 9 4 → 4 3 → 3 8 → 8 6 → 6 1 → 1

7 2 9 4  3 8 6 1 → 1 2 3 4 6 7 8 9

Merge Sort 15

Execution Example (cont.)

• Merge

7 2  9 4 → 2 4 7 9 3 8 6 1 → 1 3 6 8

7  2 → 2 7 9 4 → 4 9 3 8 → 3 8 6 1 → 1 6

7 → 7 2 → 2 9 → 9 4 → 4 3 → 3 8 → 8 6 → 6 1 → 1

7 2 9 4  3 8 6 1 → 1 2 3 4 6 7 8 9

Merge Sort 16

Analysis of Merge-Sort
• The height h of the merge-sort tree is O(log n)

– at each recursive call we divide the sequence in half

• The overall amount or work done at the nodes of depth i is O(n)

– we partition and merge 2i sequences of size n/2i

– we make 2i+1 recursive calls

• Thus, the total running time of merge-sort is O(n log n)

depth #seqs size

0 1 n

1 2 n/2

i 2i n/2i

… … …

Comparing sorting algorithms

Consider the following when evaluating a sorting algorithm:

• Time complexity

• Space complexity

– An in-place algorithm requires only n + O(1) space, using the

already given space for the n elements and O(1) additional space

• Stability

– A sorting algorithm is stable if it preserves the original relative

ordering of elements with equal value

– Ex: Unsorted sequence (B, b, a, c). Suppose B = b and a < b < c.

• Stable sorted: (a, B, b, c)

• Unstable sorted: (a, b, B, c)

– Necessary if we want to sort repeatedly by different attributes

(i.e., sort by first name, then sort again by last name)
Merge Sort 17

Merge Sort 18

Summary of Sorting Algorithms

Algorithm Time Notes

selection-sort O(n2)

in-place

not stable

for small data sets (< 1K)

insertion-sort O(n2)

in-place

stable

for small data sets (< 1K)

heap-sort O(n log n)
not stable

for large data sets (1K — 1M)

merge-sort O(n log n)

not in-place

stable

sequential data access

for huge data sets (> 1M)

Sets

Set ADT

• A collection of unordered distinct objects

– there is no inherent ordering of elements in a set, but keeping the

elements sorted can lead to more efficient set operations

• Main operations

– union(B): executes A  A∪B

– intersect(B): executes A  A ∩ B

– subtract(B): executes A  A – B

– implemented using a generic version of the merge algorithm

• Running time of an operation should be at most O(nA+nB)

Sets 21

Storing a Set in a List

• We can implement a set with a list

• Elements are sorted according to some canonical ordering

• Space used is O(n)

Sets 22

2 5 6 7 8 9

Generic Merging
• Generalized merge of two sorted lists A and B

• Auxiliary methods aIsLess, bIsLess, bothAreEqual decide whether to

add the element to list S based on what main operation is performed

23

Algorithm genericMerge(A, B)

S  empty sequence

while A.isEmpty()  B.isEmpty()

a  A.first().element(); b  B.first().element()

if a < b

aIsLess(a, S); A.remove(A.first())

else if b < a

bIsLess(b, S); B.remove(B.first())

else { b = a }

bothAreEqual(a, b, S)

A.remove(A.first()); B.remove(B.first())

while A.isEmpty()

aIsLess(a, S); A.remove(A.first())

while B.isEmpty()

bIsLess(b, S); B.remove(B.first())

return S

Example: Union

• if a < b, copy a to output sequence and go to next element of A

• if a = b, copy a to output sequence and go to next element of A and B

• if a > b, copy b to output sequence and go to next element of B

Sets 24

2A B 25 76 87 9 10

S = A∪B

Example: Union

• if a < b, copy a to output sequence and go to next element of A

• if a = b, copy a to output sequence and go to next element of A and B

• if a > b, copy b to output sequence and go to next element of B

Sets 25

2A B 25 76 87 9 10

S = A∪B 2

Example: Union

• if a < b, copy a to output sequence and go to next element of A

• if a = b, copy a to output sequence and go to next element of A and B

• if a > b, copy b to output sequence and go to next element of B

Sets 26

2A B 25 76 87 9 10

S = A∪B 2 5

Example: Union

• if a < b, copy a to output sequence and go to next element of A

• if a = b, copy a to output sequence and go to next element of A and B

• if a > b, copy b to output sequence and go to next element of B

Sets 27

2A B 25 76 87 9 10

S = A∪B 2 5 6

Example: Union

• if a < b, copy a to output sequence and go to next element of A

• if a = b, copy a to output sequence and go to next element of A and B

• if a > b, copy b to output sequence and go to next element of B

Sets 28

2A B 25 76 87 9 10

S = A∪B 2 5 6 7

Example: Union

• if a < b, copy a to output sequence and go to next element of A

• if a = b, copy a to output sequence and go to next element of A and B

• if a > b, copy b to output sequence and go to next element of B

Sets 29

2A B 25 76 87 9 10

S = A∪B 2 5 6 7 8

Example: Union

• if a < b, copy a to output sequence and go to next element of A

• if a = b, copy a to output sequence and go to next element of A and B

• if a > b, copy b to output sequence and go to next element of B

Sets 30

2A B 25 76 87 9 10

S = A∪B 2 5 6 7 8 9

Example: Union

• if a < b, copy a to output sequence and go to next element of A

• if a = b, copy a to output sequence and go to next element of A and B

• if a > b, copy b to output sequence and go to next element of B

Sets 31

2A B 25 76 87 9 10

S = A∪B 2 5 6 7 8 9 10

Using Generic Merge

for Set Operations
• Any of the set operations can be implemented using a generic merge

• For example:

– intersection: only copy elements that are duplicated in both lists

– subtraction: only copy elements from A that are not equal to

those in B

• All methods run in linear time.

Sets 32

Quick Sort

Quick Sort

A sorting algorithm based on the

divide-and-conquer paradigm

• Divide: pick a pivot element x and

partition S into

– L elements less than x

– E elements equal to x

– G elements greater than x

• Recur: sort L and G

• Conquer: join L, E and G

The choice of the pivot affects the

algorithm’s performance.

Quick Sort 34

x

x

L GE

x

Partition

1. Remove each element y from S

2. Insert y into L, E or G, depending on the

result of the comparison with the pivot x

• Each insert/remove takes O(1) time.

• Thus, the partition step of quick-sort

takes O(n) time.

Quick Sort 35

Algorithm partition(S, x)

Input sequence S, pivot element x

Output subsequences L, E, G

L, E, G  empty sequences

while S.isEmpty()

y  S.remove(S.first())

if y < x

L.insertLast(y)

else if y = x

E.insertLast(y)

else { y > x }

G.insertLast(y)

return L, E, G

S

The choice of the pivot affects the performance of Quick Sort.

Quick-Sort Tree
An execution of quick-sort depicted by a binary tree

• Each node represents a recursive call of quick-sort and stores

– Unsorted sequence before the execution and its pivot

– Sorted sequence at the end of the execution

• The root is the initial call

• The leaves are calls on subsequences of size 0 or 1

Quick Sort 36

Quick Sort Execution

• Strategy: Select the last element as the pivot

Quick Sort 37

6 3 5 8 2 4 → 2 3 4 5 6 8

3 2 → 2 3 6 5 8 → 5 6 8

3 → 3 6 5 → 5 6

6 → 6

Quick Sort Execution

• Strategy: Select the last element as the pivot

• Select pivot, partition, recursive call

Quick Sort 38

6 3 5 8 2 4 → 2 3 4 5 6 8

3 2 → 2 3 6 5 8 → 5 6 8

3 → 3 6 5 → 5 6

6 → 6

Quick Sort Execution

• Strategy: Select the last element as the pivot

• Select pivot, partition, recursive call

Quick Sort 39

6 3 5 8 2 4 → 2 3 4 5 6 8

3 2 → 2 3 6 5 8 → 5 6 8

3 → 3 6 5 → 5 6

6 → 6

Quick Sort Execution

• Strategy: Select the last element as the pivot

• Join

Quick Sort 40

6 3 5 8 2 4 → 2 3 4 5 6 8

3 2 → 2 3 6 5 8 → 5 6 8

3 → 3 6 5 → 5 6

6 → 6

Quick Sort Execution

• Strategy: Select the last element as the pivot

Quick Sort 41

6 3 5 8 2 4 → 2 3 4 5 6 8

3 2 → 2 3 6 5 8 → 5 6 8

3 → 3 6 5 → 5 6

6 → 6

Quick Sort Execution

• Strategy: Select the last element as the pivot

Quick Sort 42

6 3 5 8 2 4 → 2 3 4 5 6 8

3 2 → 2 3 6 5 8 → 5 6 8

3 → 3 6 5 → 5 6

6 → 6

Quick Sort Execution

• Strategy: Select the last element as the pivot

Quick Sort 43

6 3 5 8 2 4 → 2 3 4 5 6 8

3 2 → 2 3 6 5 8 → 5 6 8

3 → 3 6 5 → 5 6

6 → 6

Quick Sort Execution

• Strategy: Select the last element as the pivot

Quick Sort 44

6 3 5 8 2 4 → 2 3 4 5 6 8

3 2 → 2 3 6 5 8 → 5 6 8

3 → 3 6 5 → 5 6

6 → 6

Quick Sort Execution

• Strategy: Select the last element as the pivot

Quick Sort 45

6 3 5 8 2 4 → 2 3 4 5 6 8

3 2 → 2 3 6 5 8 → 5 6 8

3 → 3 6 5 → 5 6

6 → 6

Quick Sort 46

Worst-case Running Time
Occurs when the pivot is the unique minimum or maximum element

• One of L and G has size n - 1 and the other has size 0

• The running time is proportional to the sum: n + (n - 1) + … + 2 + 1

• If we use the strategy of selecting the last element as the pivot, this happens when

the list is already sorted!

Thus, the worst-case running time of quick-sort is O(n2)

depth time

0 n

1 n - 1

… …

n - 1 1

Randomized Quick Sort

Pivot selection strategy: choose a random element as the pivot

• Still has worst-case running time O(n2)

– Due to random selection, this case is highly unlikely

• Expected running time is O(nlogn)

Quick Sort 47

7 4 9 6 7 2 → 2 4 6 7 7 9

4 2 → 2 4 7 9 7 → 7 7 9

2 → 2 9 → 9

Expected Running Time
Consider a recursive call of quick-sort on a sequence of size s

• Good call: the sizes of L and G are each less than 3s/4

• Bad call: one of L and G has size greater than 3s/4

A call is good with probability 1/2

• 1/2 of the possible pivots cause good calls:

Quick Sort 48

9 10 11 12 13 14 15

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1 2 3 4 5 6 7 3 4 5 6 7 8 9 10 11 12 13 14 151

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Good call Bad call

Good pivotsBad pivots Bad pivots

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Quick Sort Pseudocode

Merge Sort 49

Quick Sort 53

Summary of Sorting Algorithms

Algorithm Time Notes

selection-sort O(n2)
in-place, not stable

slow (good for small inputs)

insertion-sort O(n2)
in-place, stable

slow (good for small inputs)

quick-sort
O(n log n)

expected

in-place, not stable

randomized

fast (good for large inputs)

heap-sort O(n log n)
not stable

fast (good for large inputs)

merge-sort O(n log n)

not in-place, stable

sequential data access

fast (good for huge inputs)

Exercise

Other: Nuts and Bolts

You are given a collection of n bolts of different widths, and n

corresponding nuts.

• You can test whether a given nut and bolt fit together, from which

you learn whether the nut is too large, too small, or an exact match

for the bolt.

• The differences in size between pairs of nuts or bolts are too small to

see by eye, so you cannot compare the sizes of two nuts or two bolts

directly.

• You are to match each bolt to each nut.

Give an efficient algorithm to solve the nuts and bolts problem.

Quick Sort 54

Exercise

• How would you modify QUICKSORT to sort into nonincreasing

order?

Merge Sort 55

Sorting Lower Bound

Comparison Based Sorting
Recall - Sorting

• input: A sequence of n values x1, x2, …, xn

• output: A permutation y1, y2, …, yn such that y1 ≤ y2 ≤ … ≤ yn

Many algorithms are comparison based

• they sort by making comparisons between pairs of objects

• ex: selection-sort, insertion-sort, heap-sort, merge-sort, quick-sort, …

• best so far runs in O(nlogn) time… can we do better?

Let’s derive a lower bound on the running time of any algorithm that uses

comparisons to sort n elements x1, x2, …., xn

Sorting Lower Bound 57

58

Counting Comparisons
A decision tree represents every sequence of comparisons that an algorithm might

make on an input of size n

• each possible run of the algorithm corresponds to a root-to-leaf path

• at each internal node a comparison xi < xj is performed and branching made

• nodes annotated with the orderings consistent with the comparisons made so far

• leaf contains result of computation (a total order of elements)

x
i
 < x

j
 ?

x
a
 < x

b
 ?

x
m
 < x

o
 ? x

p
 < x

q
 ?x

e
 < x

f
 ? x

k
 < x

l
 ?

x
c
 < x

d
 ?

Decision Tree Example

Sorting Lower Bound 60

Algorithm: insertion sort

Instance (n = 3): the numbers 1,2,3

Height of a Decision Tree

Claim: The height of a decision tree is Ω(nlogn).

Proof: There are n! leaves. A tree of height h has at most 2h leaves. So

2h ≥ n!

h ≥ log2(n!)

≥ c∙log2(n
n)

= c∙nlog2n.

Thus, h ∈ Ω(nlogn).

61

minimum height (time)

log (n!)

x
i
 < x

j
 ?

x
a
 < x

b
 ?

x
m
 < x

o
 ? x

p
 < x

q
 ?x

e
 < x

f
 ? x

k
 < x

l
 ?

x
c
 < x

d
 ?

n!

Lower Bound

Theorem: Every comparison sort requires Ω(nlogn) in the worst-case.

Proof: Given a comparison sort, we look at the decision tree it generates

on an input of size n.

• Each path from root to leaf is one possible sequence of comparisons

• Length of the path is the number of comparisons for that instance

• Height of the tree is the worst-case path length (number of

comparisons)

Height of the tree is Ω(nlogn) by the previous claim. Hence, every

comparison sort requires Ω(nlogn) comparisons.

Sorting Lower Bound 62

