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Divide-and-Conquer
Divide-and-conquer is a general algorithm design paradigm:

• Divide: divide the input data S in two disjoint subsets S1 and S2

• Recur: solve the subproblems associated with S1 and S2

– the base case for the recursion are subproblems of size 0 or 1

• Conquer: combine the solutions for S1 and S2 into a solution for S

Merge-sort is a sorting algorithm based on the divide-and-conquer 
paradigm 

• Like heap-sort

– Uses a comparator

– Has O(n log n) running time

• Unlike heap-sort

– Does not use an auxiliary priority queue

– Accesses data in a sequential manner (suitable to sort data on a disk)
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Merge Sort
Merge-sort on an input sequence S with n elements consists of three steps:

• Divide: partition S into two sequences S1 and S2 of about n/2 elements 
each

• Recur: recursively sort S1 and S2

• Conquer: merge S1 and S2 into a unique sorted sequence
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Algorithm mergeSort(S, C)

Input sequence S with n elements, comparator C

Output sequence S sorted according to C

if S.size() > 1

(S1, S2)  partition(S, n/2) 

mergeSort(S1, C)

mergeSort(S2, C)

S  merge(S1, S2)



Merging two sorted sequences
The conquer step of merge-
sort consists of merging two 
sorted sequences A and B into 
a sorted sequence S 
containing the union of the 
elements of A and B

Merging two sorted 
sequences, each with n/2 
elements, takes O(n) time
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Algorithm merge(A, B)

Input sequences A and B with n/2 elements each 

Output sorted sequence of A  B

S  empty sequence

while A.isEmpty()   B.isEmpty()

if A.first().element() < B.first().element()

S.insertLast(A.remove(A.first()))

else

S.insertLast(B.remove(B.first()))

while A.isEmpty()
S.insertLast(A.remove(A.first()))

while B.isEmpty()
S.insertLast(B.remove(B.first()))

return S
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Merge-Sort Tree
An execution of merge-sort is depicted by a binary tree

• each node represents a recursive call of merge-sort and stores

– unsorted sequence before the execution and its partition

– sorted sequence at the end of the execution

• the root is the initial call 

• the leaves are calls on subsequences of size 1

7  2  9  4            → 2  4  7  9

7  2      → 2  7 9  4       → 4  9

7    → 7 2   → 2 9  → 9 4  → 4
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Execution Example

• Partition

7  2  9  4  → 2  4  7  9 3  8  6  1  → 1  3  8  6

7  2  → 2  7 9  4  → 4  9 3  8  → 3  8 6  1  → 1  6

7 → 7 2 → 2 9 → 9 4 → 4 3 → 3 8 → 8 6 → 6 1 → 1

7  2  9  4  3  8  6  1 → 1  2  3  4  6  7  8  9
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Execution Example (cont.)

• Recursive call, partition

7  2  9  4 → 2  4  7  9 3  8  6  1  → 1  3  8  6

7  2  → 2  7 9  4  → 4  9 3  8  → 3  8 6  1  → 1  6

7 → 7 2 → 2 9 → 9 4 → 4 3 → 3 8 → 8 6 → 6 1 → 1

7  2  9  4  3  8  6  1 → 1  2  3  4  6  7  8  9
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Execution Example (cont.)

• Recursive call, partition

7  2  9  4 → 2  4  7  9 3  8  6  1  → 1  3  8  6

7  2 → 2  7 9  4  → 4  9 3  8  → 3  8 6  1  → 1  6

7 → 7 2 → 2 9 → 9 4 → 4 3 → 3 8 → 8 6 → 6 1 → 1

7  2  9  4  3  8  6  1 → 1  2  3  4  6  7  8  9
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Execution Example (cont.)

• Recursive call, base case

7  2  9  4 → 2  4  7  9 3  8  6  1  → 1  3  8  6

7  2 → 2  7 9  4  → 4  9 3  8  → 3  8 6  1  → 1  6

7 → 7 2 → 2 9 → 9 4 → 4 3 → 3 8 → 8 6 → 6 1 → 1

7  2  9  4  3  8  6  1 → 1  2  3  4  6  7  8  9
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Execution Example (cont.)

• Recursive call, base case

7  2  9  4 → 2  4  7  9 3  8  6  1  → 1  3  8  6

7  2 → 2  7 9  4  → 4  9 3  8  → 3  8 6  1  → 1  6

7 → 7 2 → 2 9 → 9 4 → 4 3 → 3 8 → 8 6 → 6 1 → 1

7  2  9  4  3  8  6  1 → 1  2  3  4  6  7  8  9
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Execution Example (cont.)

• Merge

7  2  9  4 → 2  4  7  9 3  8  6  1  → 1  3  8  6

7  2 → 2  7 9  4  → 4  9 3  8  → 3  8 6  1  → 1  6

7 → 7 2 → 2 9 → 9 4 → 4 3 → 3 8 → 8 6 → 6 1 → 1

7  2  9  4  3  8  6  1 → 1  2  3  4  6  7  8  9
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Execution Example (cont.)

• Recursive call, …, base case, merge

7  2  9  4 → 2  4  7  9 3  8  6  1  → 1  3  8  6

7  2 → 2  7 9  4 → 4  9 3  8  → 3  8 6  1  → 1  6

7 → 7 2 → 2 3 → 3 8 → 8 6 → 6 1 → 1

7  2  9  4  3  8  6  1 → 1  2  3  4  6  7  8  9

9 → 9 4 → 4
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Execution Example (cont.)

• Merge

7  2  9  4 → 2  4  7  9 3  8  6  1  → 1  3  8  6

7  2 → 2  7 9  4 → 4  9 3  8  → 3  8 6  1  → 1  6

7 → 7 2 → 2 9 → 9 4 → 4 3 → 3 8 → 8 6 → 6 1 → 1

7  2  9  4  3  8  6  1 → 1  2  3  4  6  7  8  9
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Execution Example (cont.)

7  2  9  4 → 2  4  7  9 3  8  6  1 → 1  3  6  8

7  2 → 2  7 9  4 → 4  9 3  8 → 3  8 6  1 → 1  6

7 → 7 2 → 2 9 → 9 4 → 4 3 → 3 8 → 8 6 → 6 1 → 1

7  2  9  4  3  8  6  1 → 1  2  3  4  6  7  8  9
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Execution Example (cont.)

• Merge

7  2  9  4 → 2  4  7  9 3  8  6  1 → 1  3  6  8

7  2 → 2  7 9  4 → 4  9 3  8 → 3  8 6  1 → 1  6

7 → 7 2 → 2 9 → 9 4 → 4 3 → 3 8 → 8 6 → 6 1 → 1

7  2  9  4  3  8  6  1 → 1  2  3  4  6  7  8  9
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Analysis of Merge-Sort
• The height h of the merge-sort tree is O(log n)

– at each recursive call we divide the sequence in half

• The overall amount or work done at the nodes of depth i is O(n)

– we partition and merge 2i sequences of size n/2i

– we make 2i+1 recursive calls

• Thus, the total running time of merge-sort is O(n log n)

depth #seqs size

0 1 n

1 2 n/2

i 2i n/2i

… … …



Comparing sorting algorithms

Consider the following when evaluating a sorting algorithm:

• Time complexity

• Space complexity

– An in-place algorithm requires only n + O(1) space, using the 

already given space for the n elements and O(1) additional space

• Stability

– A sorting algorithm is stable if it preserves the original relative 

ordering of elements with equal value

– Ex: Unsorted sequence (B, b, a, c). Suppose B = b and a < b < c.

• Stable sorted: (a, B, b, c)

• Unstable sorted: (a, b, B, c)

– Necessary if we want to sort repeatedly by different attributes 

(i.e., sort by first name, then sort again by last name)
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Summary of Sorting Algorithms

Algorithm Time Notes

selection-sort O(n2)

in-place

not stable

for small data sets (< 1K)

insertion-sort O(n2)

in-place

stable

for small data sets (< 1K)

heap-sort O(n log n)
not stable

for large data sets (1K — 1M)

merge-sort O(n log n)

not in-place

stable

sequential data access

for huge data sets (> 1M)
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Set ADT

• A collection of unordered distinct objects

– there is no inherent ordering of elements in a set, but keeping the 

elements sorted can lead to more efficient set operations

• Main operations

– union(B):  executes A  A∪B

– intersect(B): executes A  A ∩ B

– subtract(B): executes A  A – B

– implemented using a generic version of the merge algorithm

• Running time of an operation should be at most O(nA+nB)

Sets 21



Storing a Set in a List

• We can implement a set with a list

• Elements are sorted according to some canonical ordering

• Space used is O(n)

Sets 22

2 5 6 7 8 9



Generic Merging
• Generalized merge of two sorted lists A and B

• Auxiliary methods aIsLess, bIsLess, bothAreEqual decide whether to 

add the element to list S based on what main operation is performed
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Algorithm genericMerge(A, B)

S  empty sequence

while A.isEmpty()   B.isEmpty()

a  A.first().element();  b  B.first().element()

if a < b

aIsLess(a, S);  A.remove(A.first())

else if b < a

bIsLess(b, S);  B.remove(B.first())

else { b = a }

bothAreEqual(a, b, S)

A.remove(A.first());  B.remove(B.first())

while A.isEmpty()

aIsLess(a, S);  A.remove(A.first())

while B.isEmpty()

bIsLess(b, S);  B.remove(B.first())

return S



Example: Union

• if a < b, copy a to output sequence and go to next element of A

• if a = b, copy a to output sequence and go to next element of A and B

• if a > b, copy b to output sequence and go to next element of B

Sets 24

2A B 25 76 87 9 10

S = A∪B



Example: Union

• if a < b, copy a to output sequence and go to next element of A

• if a = b, copy a to output sequence and go to next element of A and B

• if a > b, copy b to output sequence and go to next element of B

Sets 25

2A B 25 76 87 9 10

S = A∪B 2



Example: Union

• if a < b, copy a to output sequence and go to next element of A

• if a = b, copy a to output sequence and go to next element of A and B

• if a > b, copy b to output sequence and go to next element of B

Sets 26

2A B 25 76 87 9 10

S = A∪B 2 5



Example: Union

• if a < b, copy a to output sequence and go to next element of A

• if a = b, copy a to output sequence and go to next element of A and B

• if a > b, copy b to output sequence and go to next element of B

Sets 27

2A B 25 76 87 9 10

S = A∪B 2 5 6



Example: Union

• if a < b, copy a to output sequence and go to next element of A

• if a = b, copy a to output sequence and go to next element of A and B

• if a > b, copy b to output sequence and go to next element of B

Sets 28

2A B 25 76 87 9 10

S = A∪B 2 5 6 7



Example: Union

• if a < b, copy a to output sequence and go to next element of A

• if a = b, copy a to output sequence and go to next element of A and B

• if a > b, copy b to output sequence and go to next element of B

Sets 29

2A B 25 76 87 9 10

S = A∪B 2 5 6 7 8



Example: Union

• if a < b, copy a to output sequence and go to next element of A

• if a = b, copy a to output sequence and go to next element of A and B

• if a > b, copy b to output sequence and go to next element of B

Sets 30

2A B 25 76 87 9 10

S = A∪B 2 5 6 7 8 9



Example: Union

• if a < b, copy a to output sequence and go to next element of A

• if a = b, copy a to output sequence and go to next element of A and B

• if a > b, copy b to output sequence and go to next element of B

Sets 31

2A B 25 76 87 9 10

S = A∪B 2 5 6 7 8 9 10



Using Generic Merge

for Set Operations
• Any of the set operations can be implemented using a generic merge

• For example:

– intersection: only copy elements that are duplicated in both lists

– subtraction: only copy elements from A that are not equal to 

those in B

• All methods run in linear time.

Sets 32
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Quick Sort

A sorting algorithm based on the 

divide-and-conquer paradigm

• Divide: pick a pivot element x and 

partition S into 

– L elements less than x

– E elements equal to x

– G elements greater than x

• Recur: sort L and G

• Conquer: join L, E and G

The choice of the pivot affects the 

algorithm’s performance.

Quick Sort 34

x

x

L GE

x



Partition

1. Remove each element y from S

2. Insert y into L, E or G, depending on the 

result of the comparison with the pivot x

• Each insert/remove takes O(1) time.

• Thus, the partition step of quick-sort 

takes O(n) time.
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Algorithm partition(S, x)

Input sequence S, pivot element x

Output subsequences L, E, G

L, E, G  empty sequences

while S.isEmpty()

y  S.remove(S.first())

if y < x

L.insertLast(y)

else if y = x

E.insertLast(y)

else { y > x }

G.insertLast(y)

return L, E, G

S

The choice of the pivot affects the performance of Quick Sort.



Quick-Sort Tree
An execution of quick-sort depicted by a binary tree

• Each node represents a recursive call of quick-sort and stores

– Unsorted sequence before the execution and its pivot

– Sorted sequence at the end of the execution

• The root is the initial call 

• The leaves are calls on subsequences of size 0 or 1
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Quick Sort Execution

• Strategy: Select the last element as the pivot

Quick Sort 37

6 3 5 8 2 4 → 2 3 4 5 6 8

3 2 → 2 3 6 5 8 → 5 6 8

3  → 3 6 5 → 5 6

6 → 6



Quick Sort Execution

• Strategy: Select the last element as the pivot

• Select pivot, partition, recursive call

Quick Sort 38

6 3 5 8 2 4 → 2 3 4 5 6 8

3 2 → 2 3 6 5 8 → 5 6 8

3  → 3 6 5 → 5 6

6 → 6



Quick Sort Execution

• Strategy: Select the last element as the pivot

• Select pivot, partition, recursive call

Quick Sort 39

6 3 5 8 2 4 → 2 3 4 5 6 8

3 2 → 2 3 6 5 8 → 5 6 8

3  → 3 6 5 → 5 6

6 → 6



Quick Sort Execution

• Strategy: Select the last element as the pivot

• Join 
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6 3 5 8 2 4 → 2 3 4 5 6 8

3 2 → 2 3 6 5 8 → 5 6 8

3  → 3 6 5 → 5 6

6 → 6



Quick Sort Execution

• Strategy: Select the last element as the pivot
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6 3 5 8 2 4 → 2 3 4 5 6 8

3 2 → 2 3 6 5 8 → 5 6 8

3  → 3 6 5 → 5 6

6 → 6



Quick Sort Execution

• Strategy: Select the last element as the pivot
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6 3 5 8 2 4 → 2 3 4 5 6 8

3 2 → 2 3 6 5 8 → 5 6 8

3  → 3 6 5 → 5 6

6 → 6



Quick Sort Execution

• Strategy: Select the last element as the pivot
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6 3 5 8 2 4 → 2 3 4 5 6 8

3 2 → 2 3 6 5 8 → 5 6 8

3  → 3 6 5 → 5 6

6 → 6



Quick Sort Execution

• Strategy: Select the last element as the pivot
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6 3 5 8 2 4 → 2 3 4 5 6 8

3 2 → 2 3 6 5 8 → 5 6 8

3  → 3 6 5 → 5 6

6 → 6



Quick Sort Execution

• Strategy: Select the last element as the pivot

Quick Sort 45

6 3 5 8 2 4 → 2 3 4 5 6 8

3 2 → 2 3 6 5 8 → 5 6 8

3  → 3 6 5 → 5 6

6 → 6



Quick Sort 46

Worst-case Running Time
Occurs when the pivot is the unique minimum or maximum element

• One of L and G has size n - 1 and the other has size 0

• The running time is proportional to the sum:        n + (n - 1) + … + 2 + 1

• If we use the strategy of selecting the last element as the pivot, this happens when 

the list is already sorted!

Thus, the worst-case running time of quick-sort is O(n2)

depth time

0 n

1 n - 1

… …

n - 1 1



Randomized Quick Sort

Pivot selection strategy: choose a random element as the pivot

• Still has worst-case running time O(n2)

– Due to random selection, this case is highly unlikely 

• Expected running time is O(nlogn)
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7  4  9  6 7  2    → 2  4  6  7  7  9

4 2      → 2  4 7  9  7 → 7  7  9

2 → 2 9 → 9



Expected Running Time
Consider a recursive call of quick-sort on a sequence of size s

• Good call: the sizes of L and G are each less than 3s/4

• Bad call: one of L and G has size greater than 3s/4

A call is good with probability 1/2

• 1/2 of the possible pivots cause good calls:
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9 10 11 12 13 14 15

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1 2 3 4 5 6 7 3 4 5 6 7 8 9 10 11 12 13 14 151

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Good call Bad call

Good pivotsBad pivots Bad pivots

1   2   3   4    5  6  7  8  9  10  11 12  13  14  15  16



Quick Sort Pseudocode
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Summary of Sorting Algorithms

Algorithm Time Notes

selection-sort O(n2)
in-place, not stable

slow (good for small inputs)

insertion-sort O(n2)
in-place, stable

slow (good for small inputs)

quick-sort
O(n log n)

expected

in-place, not stable

randomized

fast (good for large inputs)

heap-sort O(n log n)
not stable

fast (good for large inputs)

merge-sort O(n log n)

not in-place, stable 

sequential data access

fast  (good for huge inputs)



Exercise

Other: Nuts and Bolts

You are given a collection of n bolts of different widths, and n

corresponding nuts.

• You can test whether a given nut and bolt fit together, from which 

you learn whether the nut is too large, too small, or an exact match 

for the bolt.

• The differences in size between pairs of nuts or bolts are too small to 

see by eye, so you cannot compare the sizes of two nuts or two bolts 

directly.

• You are to match each bolt to each nut. 

Give an efficient algorithm to solve the nuts and bolts problem.
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Exercise

• How would you modify QUICKSORT to sort into nonincreasing 

order?
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Comparison Based Sorting
Recall - Sorting

• input: A sequence of n values x1, x2, …, xn

• output: A permutation y1, y2, …, yn such that y1 ≤ y2 ≤ … ≤ yn

Many algorithms are comparison based

• they sort by making comparisons between pairs of objects

• ex: selection-sort, insertion-sort, heap-sort, merge-sort, quick-sort, …

• best so far runs in O(nlogn) time… can we do better?

Let’s derive a lower bound on the running time of any algorithm that uses 

comparisons to sort n elements x1, x2, …., xn

Sorting Lower Bound 57
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Counting Comparisons
A decision tree represents every sequence of comparisons that an algorithm might 

make on an input of size n

• each possible run of the algorithm corresponds to a root-to-leaf path

• at each internal node a comparison xi < xj is performed and branching made

• nodes annotated with the orderings consistent with the comparisons made so far

• leaf contains result of computation (a total order of elements)

x
i
 < x

j
 ?

x
a
 < x

b
 ?

x
m
 < x

o
 ? x

p
 < x

q
 ?x

e
 < x

f
 ? x

k
 < x

l
 ?

x
c
 < x

d
 ?



Decision Tree Example

Sorting Lower Bound 60

Algorithm: insertion sort

Instance (n = 3): the numbers 1,2,3



Height of a Decision Tree

Claim: The height of a decision tree is Ω(nlogn).

Proof: There are n! leaves. A tree of height h has at most 2h leaves. So

2h ≥   n!

h   ≥  log2(n!)  

≥  c∙log2(n
n)

= c∙nlog2n.

Thus, h ∈  Ω(nlogn).
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minimum height (time)

log (n!)

x
i
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q
 ?x
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l
 ?

x
c
 < x

d
 ?
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Lower Bound

Theorem: Every comparison sort requires Ω(nlogn) in the worst-case.

Proof: Given a comparison sort, we look at the decision tree it generates 

on an input of size n.

• Each path from root to leaf is one possible sequence of comparisons

• Length of the path is the number of comparisons for that instance

• Height of the tree is the worst-case path length (number of 

comparisons)

Height of the tree is Ω(nlogn) by the previous claim. Hence, every 

comparison sort requires Ω(nlogn) comparisons.
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